Int.
1992,

if. on

Chapter 12
Zeta Potential and Colloid Reaction Kinetics

P. Mulvaney

12.1 Introduction

The solid-liquid interface has been the subject of experimental study for some 100
years, beginning with Gibbs, whose work on the thermodynamics of adsorption laid
the foundations for interface science. The electrical aspects were investigated by von
Helmholtz, Gouy, Chapman, and Stern, as well as other eminent scientists around
the turn of the century. Their aim was to explain the structure of the interface and
to understand how properties such as the electric potential and surface tension
varied across the surface layers. In addition, early theories successfully explained
the phenomenon of electrocapillarity, the origins of the Nernst or equilibrium elec-
trode potential, and they could also predict, to within an order of magnitude, the
electrical capacitance of an electrode immersed in water. However, it was always
recognized that the structure of the electrical double layer (EDL) played an equally
important role in electrode kinetics. Butler and Volmer subsequently determined
how the kinetics of charge transfer depended on the electrode potential and demon-
strated that the equilibrium electrode potential was directly related to the rate of
electron transfer.

In the 1940s Derjaguin and Landau, and independently Verwey and Overbeek
working in Holland, developed the basic theory of particle coagulation (the DLVO
model) in terms of the electrical double layer around each colloid particle in solu-
tion [1]. They established that colloid coagulation is about the interaction of elec-
trical double layers. A large body of evidence subsequently accumulated in support
of the basic tenets of DLVO theory, and eventually, colloid chemistry adopted the
entire electrical double layer structure and its associated thermodynamics as part of
its foundations. However redox reactions at particle surfaces could not be readily
investigated, and questions about kinetics at colloid surfaces — processes such as
redox catalysis, colloid nucleation and dissolution, electron transfer by excited
species generated in solution, and charge injection by photosensitizers — all re-
mained largely unanswered. Such redox reactions are central to a plethora of im-
portant industrial processes ranging from the photographic process [2], the removal
of rust [3], the decontamination of nuclear reactor coolant systems [4], the transport
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of nutrients such as Mn?* in natural waters [5], solar energy conversion [6], the
degradation of paints, the removal of organic pollutants [7], and the electro-
chemical discharge of the alkaline battery [8]. Over the last 20 years, the use of op-
tically transparent colloids together with the increased availability of stopped-flow
spectroscopy, laser flash photolysis, and pulse radiolysis has finally enabled a direct
comparison of colloid electrochemical kinetics with standard electrode kinetics to
be made. In particular, whilst the equilibrium Nernst potential is fundamental to
both areas of surface science, one can now assert that the Butler—Volmer equation
(or Tafel equation in its simpler form) will soon be as important to colloid chemists
as it is to the electrochemist.

In this chapter, we examine some of the available colloid data on the kinetics of
electron transfer and try to highlight the parallels with conventional metal electro-
chemistry. We will focus on metal oxide particles because they are the most readily
understood, and because the majority of the available experimental data have been
gleaned from these materials. We begin by presenting a summary of the electrical
structure of the metal-oxide—water interface. This enormous subject is covered in
many texts in detail, particularly the underlying assumptions inherent in the deri-
vation of the equations describing the double layer [9-13]. The aim here is to ex-
plain how the structure of the electrical double layer affects the actual rate of charge
transfer at the particle interface. Such understanding will be fundamental to the
improved design and exploitation of nanostructured materials [14, 15].

12.2 The EDL around Metal Oxides

12.2.1 The Helmholtz Region

When a conductor is placed into water, the steady state charge that builds up on the
solid is usually due to charge transfer between the metal and solution. For example,
a platinum electrode usually has an open circuit potential in aerated solution
determined by the (largely irreversible) kinetics of the reaction [16]:

O, +H" +e (Pt)— HO; (12.1

For semiconductors or insulators, the amount of charge that can be exchanged is
much less, since the mobile charge is due only to impurities. As a consequence, it
is usually the preferential loss of lattice cations and anions, or the adsorption of
charged species from solution, that determines the amount of surface charge on a
particle.

When a metal oxide surface is created in solution, the adsorption of hydroxyl ions
or protons leads to the generation of a surface charge, and an electric potential
develops between the surface and the bulk solution. Provided the surface activity of
these so-called potential-determining ions (H*, OH ) remains constant, the surface
potential of a metal oxide particle in aqueous solution is given by the familiar
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distance
Figure 12.1. The diffuse layer. (a) The charge distribution
near a charged surface, and (b) the potential distribution, "
which follows one of the four equations in Table 12.1. —— —
Nernst equation:
o= —0.059 (pH — pHpzc) (12.2)

where pH,, refers to the pH at which there is equal adsorption of potential-
determining cations and anions at the surface. In response to the adsorbed surface
charge there will be a local excess of counterions around the particle. These coun-
terions form a diffuse layer around the particle and cause the electric potential to
slowly decay to zero as one moves away from the particle surface towards the bulk
solution. as shown schematically in Figure 12.1. However, some of these ions may
be strongly adsorbed, forming a plane of bound countercharge, which will lower the
electric potential immediately adjacent to the particle surface. This region is usually
called the Helmholtz or Stern layer and is made up of both strongly polarized water
molecules and desolvated ions, as shown in Figure 12.2. The adsorption plane is
located at a distance x; from the actual surface, and the relative permittivity in the
region 0 < x < x is taken to be ;. £ has a value usually taken to be between 2 and
6. Since the distance of these ions from the surface is only of the order of 3 A, the
surface and counter charge may be treated as a parallel plate condenser with a ca-
pacitance per unit surface area given by

!\’] -(T”[JI lll'ljr] - i||':l] )= !I|F,'<|J'(.\'| 1:3'

where #¢ is the permittivity of the layer and oy is the surface charge density.
Consequently, the potential at x; is reduced to

Y = Yo oo/ K1 =W — aoX1[€1€0 (12.4)




Figure 12.2. The electrical double layer with Stern
or Helmholtz layer. (a) Charge distribution is broken
up into a layer of specifically adsorbed ions and a
diffuse layer. (b) The potential distribution showing
the linear decay in the inner region and the diffuse layer
potential, which begins at a distance x; from the surface
— and at a lower potential than .

distance

Figure 12.3. The electrical double layer according to the
GCSG model. (a) Charge distribution includes an inner
distance  layer due to adsorbed ions and a second compact layer
= *  due to the finite size of hydrated ions approaching the
surface from the diffuse layer. (b) The distribution of
~ ] potential. For the case shown with superequivalent
adsorption, the potential at x; or shear plane is the
opposite to the intrinsic surface charge. There is also a
linear variation in potential between x; and x.

It is important to realize that although ions adsorbed electrostatically at the
Helmholtz plane will not completely neutralize the surface charge, if there is, in
addition, a chemical driving energy for adsorption, the adsorbed countercharge
may exceed that of the true surface charge, and the overall charge on the particle
may be reversed. This is depicted in Figure 12.3 and we see that the potential ac-
tually changes sign, before decaying slowly to zero in bulk solution. This situation is
often realised with polyelectrolytes such as poly(acrylic acid) or sodium hexameta-
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phosphate, which can superadsorb on colloid surfaces. The ions in the Helmholtz
layer are so strongly bound that an electric field applied to the colloid will cause
motion of the particle, the adsorbed countercharge, and a monolayer or so of
solvent molecules, i.e. the effective charge on the electrokinetic unit is not due solely
to the surface charge, but will be reduced (generally) by the plane of countercharge.

In the GCSG (Gouy—Chapman-Stern-Grahame) model [17, 18] a second struc-
tural plane is also defined, and this is shown in Figure 12.3. This is at a distance x;
and is the distance of closest approach of solvated ions to the plane x;, owing to the
finite size of the ion and its hydration shell. This second plane is usually termed the
outer Helmholtz plane (OHP), with x; then being the inner Helmholtz plane (IHP).
In this case, the electric potential decreases further between the inner plane of ad-
sorbed anions and the OHP where counterions reach. It is the potential at x; which
then orientates other ions in solution and induces the buildup of the space charge
layer of counterions around the particle.

12.2.2 The Diffuse Layer

Electroneutrality requires that, overall, the excess charge density around the
charged colloid particle in the diffuse layer, o4, must equal the charge density on the
particle, i.e.

rJ
n

Og+0] T0d = 0 1

The electric potential at any point in the diffuse layer is calculated from Poisson’s
equation:

Vi = —p/ets (12.6)
For a symmetrical z:z electrolyte, the charge density at any point in solution is
p==te{n—n_) 12.7)

where |z| is the absolute electrolyte valency, and n, and n_ are the respective ion
concentrations, at that point in the solution. Assuming the ions are distributed in
the electric field according to the Boltzmann equation, then at any point we can
write

n,=n"4 exp(—2z4 ey lkT) (12.8)

where n is the bulk ion concentration, and combining Egs. (12.8) and (12.9), we
obtain the Poisson—Boltzmann (PB) equation:

V2 = —2n™ zefe.8, sinh (zey [2kT) (12.9)
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The boundary conditions for integration are that in the bulk solution. the potential,
and the electric field disappear:

Y—0as x— o (12.10)
and

dif/dx — 0 as x — oo (12.11
whilst at the start of the diffuse layer, the potential must be Wy

Vix=x,) = Y1 (12.12)
The solution of the PB equation is not straightforward, and the method of solution
can be simplified by considering four regimes in turn.
12.2.3 The Diffuse Layer for Micron-Sized Colloid Particles
If the particle radius is large, the double layer can be treated as flat. and Cartesian
coordinates used. Further, if the diffuse layer potential at x; is small (f « kT /ze),
then linearization of the exponential terms leads to

V2 =diy/dx? = k2 (12.13)
where

K2 =2n%e22 e, kT (12.14)

is called the Debye-Hiickel parameter or inverse double layer thickness. Eq. (12.13)
can be directly integrated using the boundary conditions ( Eq. 12.10, 12.11) to yield

W = exp (—kx) (12.15)

This shows that a charged particle has an apparent surface potential y; which falls
off to 1/e of its surface value over a distance x~! in an electrolyte solution. For high
potentials, y; > 25 mV/z at 298 K, the linearization is no longer accurate, and Eq.
(12.9) must be integrated. The result is

tanh (zey /4kT) = tanh (zey, [4kT) exp (—xx) (12.16)

These results for high and low potentials for large particles are summarized in Table
12.1. Eq. (12.16) reveals that even for high potentials the diffuse layer thickness is
still k1. We can see that the approximation of a flat double layer around a colloid
particle will be valid if ka « 1. To obtain the capacitance of the double layer we
note that
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Table 12.1. Solution to the PB equation for high and low surface potentials in a symmetric elec-
trolyte for high and low surface curvature.

Large Particles xa » 1 Small Particles xa « |
low potentials Y (x) = ¢ exp(—xx) w(r) ol exp(—x(r — a))
<25mV : ,
: : . 2 iy 2d¥ 2zm™e . [
high potentials tanh(y/4) = tanh(y,/4) exp(—xx) Ve = (-—'{; P Sl %)
> 25mV dr? r dr Eréo kT,
= (numerical solution only)
zew 222 e*n™=] "
where y = and = {—
il kT . " | &tk T ]
(o1 +0o) = —&r8o A [dx|x—x1 (12.17)
From (12.12),
dy/dxix—x1 = —K¥,, (12.18)
and on substitution we get
Ky = (0, + a0 = —aafy1 = &Eok. (12.19)

Thus the diffuse layer around a particle with ka « 1 behaves like a parallel-plate
capacitor, with thickness k', which is why x~' is called “the diffuse layer thick-

ness.”

12.2.4 The Diffuse Layer for Nanosized Particles

Nanosized particles distinguish themselves from their conventional, and larger,
micron-sized counterparts by the fact that the double layer must be considered
spherical because, for colloid particles with diameters of 100 A, the assumption of
flat double layers is no longer accurate. For example, at | mM NaNOs, the Debye
length is 100 A, so xa = 1. Integration of Eq. (12.9) must now be carried out in
spherical coordinates. For small potentials linearization of Eq. (12.9) yields
Yy(r) = yna/r exp (—x(r —a)) 12.20)
However, an electric potential of the same order as thermal energies is usually
insufficient to prevent particle coalescence (see Section 12.2.5). So whilst the sim-
plification renders the solutions more tractable, it does not provide accurate results
for stable colloids with higher surface potentials, and the use of the linearized forms
is generally inadequate. For highly charged particles, the potential distribution must
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be solved numerically through, for example, Runge-Kutta methods (see Section
12.2.5 below for an analytic approximation). The presence of the diffuse layer
around an electrostatically stabilized colloid particle is essential. It is the repulsion
experienced by two colloid particles as their double layers overlap that stabilizes
them against coagulation. A high diffuse layer potential and a low electrolyte con-
centration, which increases the range of repulsion, are necessary for good colloidal
stability. (In saying this, we ignore the possibility that the particles may be stabilized
by polymers or large surfactants.)

We can now write down the total potential distribution between the particle sur-
face and solution for an insulating or semiconducting metal oxide particle immersed
in aqueous solution. For the model shown in Figure 12.2, we have

U(x1) = ¢, — ao/K; 12.21)
V(x> xy) =f(k,a,¢,) (12.22)
¥, = —0.059 (pH — pH,,.) (12.23)

Here, f(x, a, ;) refers to one of the four solutions in Table 12.1. Clearly, even for
a model with just a single inner region, there are a number of experimental variables
which need to be measured in order to quantify the potential distribution. Given
that & and x; are not really directly accessible to experimental verification, simplifi-
cations are often advisable. Furthermore, until now. most electrokinetic inves-
tigations of colloid systems have been confined to the situation where only indif-
ferent ions such as Na* or NO;~, are present in solution. In order to carry out
electron transfer studies, there must be a redox couple present as well. Further
simplification arises if the chemistry in solution can be controlled. By assuming
there is no specific adsorption from solution we can set a; =0. However, this is
clearly a poor approximation if a polyelectrolyte or surfactant has been used to
stabilize the particles, or if a strongly chemisorbed ligand such as a thiol or amine
derivative has been used to minimize particle growth during preparation. There has
been little work done on the specific adsorption of redox couples, or even with
simple carboxylic acids such as sodium citrate, which are extensively used to stabi-
lize nanosized metal colloids.

12.2.5 The ZOS Model for Poorly Defined Nanoparticles

Before we discuss the process of electron transfer at colloid surfaces. we will present
a simplified analytic version of the standard Stern model shown in Figure 12.2,
which will allow us to understand the basic electrochemical kinetics involved,
without needing to specify all the parameters of a complete double layer model. The
double layer is broken up into a single Helmholtz layer of thickness x; and dielec-
tric constant &;&,, i.e. with a constant capacitance given by

Ki=nea/x5 (12.24)
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There is no specific adsorption at the plane xj, which is also taken to be the start of
the diffuse layer, i.e.

g =0, (12.25)
and
Og = —0d- 1226'

Finally, to link the electrical double-layer potentials to experimentally accessible
data. we assume that the potential at x; is identical to the observed, measured “‘zeta
potential.”

¥, =L (12.27)

For particles in the size regime 30- 100 A. the condition x; « a still holds and the
flat-plate condenser model for the inner layer is justified. However, the diffuse layer
thickness. characterised by the Debye-Hiickel parameter k ! is now much larger
than a. The diffuse layer must be considered spherical. In principle, we need to solve
the PB equation numerically, but we can save ourselves computational effort by
adopting one of the various analytic approximations to Eq. ( 12.9) that have been
developed. Ohshima et al. [19] found that for a sphere of radius a immersed ina 1: 1
electrolyte of Debye—Hiickel length k-~ '

o 12
: el
8In |cosh [ ——
el . i 5 In | cosh (%_ )}
o Eﬂlnh e 14— -+ e
eeokk T 2k - ( el ) {2 sinh? ( el )
A cos — A”s —
kT 2kT
(12.28)

where A4 = ka. The diffuse layer charge, zeta potential, and surface potential are
linked by

{ =¥, =¥, — 0o/ Ki = ¥, + aa/Ki. (12.29)

We can now describe the double-layer structure using just one or two parameters,
provided we have zeta potential data, which includes the point of zero charge
(PHpazc). ¥, 18 deduced directly from the pH of the experiment (through Eq. (12.2)).
Then from Eq. (12.28), we obtain o4 using , and a. From Eq. (12.29), this gives us
K; directly. The validity of this approach can be tested using zeta potential data
over a wide pH range to determine the average value of the Helmholtz capacitance.
This is shown in Figure 12.4, where ka has been fixed at | and zeta potential vs. pH
data have then been generated for various values of Kj. If no zeta potential data are
available for a particular system, then as a last resort, we can use values of K de-
termined for micron sized particles of the same material via electrophoresis, and try
to create artificial zeta potential vs. pH curves. This model contains the funda-
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Nernst /100 uF em >
Potential /  / 5 ¥
150 , /25 uF cm'j/..--f"""
. - |
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= /S 5 uF cm™
& 3
&
K =2 uFcm? - -y
Ao Figure 12.4. The calculated values of { vs.
pH for nanosized colloid particles with
ImM I:1 t"cflrni.\'lt‘—‘ a=100 A and 1 mM 1:1 electrolyte (i.e.
Ka=| | a=1) for different values of the inner

layer capacitance, K;. The diffuse layer
0 2 4 6 8 10 charge is calculated from Eq. (12.28), and
pzc - pH then { is obtained from Egs. (12.2, 12.29).

mental features required to explain both colloid stability and redox chemistry at a
nanoparticle surface. There is a diffuse layer, whose thickness depends upon the
electrolyte concentration and surface potential, and an inner layer, the potential
across which is controlled via the pH and inner layer capacitance. Because it con-
tains no Stern layer charge and analytical approximations are used for the solution
of the PB equation, this model is called the zero order Stern model (ZOS). The way
the electric double layer potential is partitioned between the Helmholtz and diffuse
layers critically determines both colloid stability and electron transfer kinetics.

12.2.6 The Point of Zero Charge and the Isoelectric Point

All these various double layer models have been designed by colloid chemists to
explain the structure of the electrical double layer. In particular, they explain the
apparent surface charge density obtained when a suspension is titrated with acid
and base, and the observed mobility of the suspension particles when subjected to
an electric field at different pH values. Because of the possibility of specific adsorp-
tion to colloid particles, there are two possible reference points for the measurement
of the electric potential during mobility studies. These are the point of zero charge
(pzc) and the isoelectric point (iep) of the solid [13]. The pzc is defined as the con-
centration of potential determining ions for which the surface charge o, is zero. For
metal oxides, this corresponds to the pH at which ['y+ = I'on-, where I' signifies
the adsorption density. The isoelectric point is the concentration of potential deter-
mining ions at which the zeta potential is zero. They are often used interchange-
ably, but this is only the case if, at the pzc, there is no charge at the IHP. Thus,
at the i.e.p. 6, = g, and therefore o4 = 0. Conversely, at the p.z.c. 6, = 0, and

ag) = —0a4.
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12.3 Colloid Electron Transfer Kinetics — Theory

We now consider how the kinetics of electron transfer to particles are affected by
this electrical double layer structure postulated to explain observed electrokinetic
data. The two equations necessary are Fuchs’ equation, (also used to describe the
kinetics of colloid coagulation,) and the Tafel equation which quantifies the electric
field dependence of the electron transfer rate constant,

12.3.1 Mass-Transfer-Limited Reactions

The rate constant for the steady state, diffusion-controlled reaction in solution be-
tween two species is given by the familiar Smoluchowski expression,

kgir = 4nRD, (12.30)

where R = Reon + Rrad ~ Reon is the combined reaction radii of the electroactive
species and the colloid particle, and D = Deoyy + Drag ~ Drag, the combined diffu-
sion coefficient. However charged species will also experience a force due to the
electric field around the particle at any pH other than the pzc. The flux of an ionic
species with concentration ¢ and charge zg towards a spherical surface in the pres-
ence of a position dependent electric field y(r) is [20]

S {Eﬂi}f‘f’} (12.31)

[dr kT dr |

The boundary conditions are that ¢ = 0 at r = a and ¢ = ¢* (the bulk radical con-
centration) at r = oo. Integration yields

4dnD

'{\":L- — X Y,
e zrey(r) 2
exp|\ —r )" dr

d

(12.32)

The integral in the denominator is the reciprocal of the effective reaction radius.
When ¢(r) = 0, Eq. (12.32) reduces to the Smoluchowski equation; in the presence
of a nonzero field, the denominator can be greater than or less than a ', depending
on the signs of zg and ¥(r). Note that even in the presence of a field, steady state
conditions prevail after ~107"s, so that the time dependence of the flux can be
ignored in almost all colloid systems unless the suspension is very concentrated.
e.g. for TiOy colloids with a=50A. the half-life for reaction with (CH;);COH
(k=5x10""M's"!, [21]) is 10ns only at 0.5 M TiO,. It is unusual to work at
such concentrations because of particle coalescence or because of the extremely high
absorbance of such sols, which renders time-resolved work by spectroscopic means
quite difficult.
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' Figure 12.5. The effect of particle zeta potential
on the mass transfer limited rate constant for
P radicals with charge +1 and particle radius 20A.
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10l Smoluchowski limit. Curve is drawn through
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Radical Charge comparison. Adapted from ref, 23.

Solution phase reactants can only approach the surface to the distance x, [18, 22].
Hence, the metal oxide can be considered to have a radius a and surface potential
{, so that the boundary condition required for the integration of Eq. (12.29) is
Y(a) = (. Once at the shear plane, transfer or deactivation occurs instantly. Thus
for mass transfer limited reactions, we need to know D4 and a, to calculate the
Smoluchowski limit. In addition, when there is significant migration we need n*
(the bulk electrolyte concentration), zg (the radical charge) and (.

To see how the field affects the mass transfer limited rate constant, calculated
values are shown in Figures 12.5 and 12.6 for conditions typical for nanosized col-
loids in aqueous solution. Figure 12.5 illustrates the dependence on the { potential
(for zgr = 1) for three different electrolyte concentrations and Figure 12.6 the de-
pendence of the mass transfer limited rate constant on the radical charge (at
{ = —-80 mV). A particle radius of 20A was assumed in calculating the potential
profile. In each case, the potential distribution was first calculated from the non-
linear PB equation using the given parameters a, x, {. (2000 points out to a distance
of 10k~ !). Then for a given value of {, and the radical charge, the flux at the surface
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was calculated by a second integration using Eq. (12.32). As is clear from the re-
sults, diffusion controlled radical-colloid interactions are strongly dependent on the
double layer properties (salt concentration, {, particle radius) and the magnitude of
the radical charge. The flux of charged species due to migration rivals that due to
the concentration gradient at high potentials and low ionic strength. When the two
supplement each other, the rate may triple or quadruple, even at low radical charge.
This should be readily discernible using flash photolysis or pulse radiolysis tech-
niques. When the effects of the fluxes are opposing, the effect is far more dramatic,
and the net flux to the colloid particle may be retarded by several orders of magni-
tude. Consequently, the effect of the zeta potential on mass transfer will be most
clearly seen when the double layer acts to retard diffusion. In some cases a second
order rate constant of just 107 M~ s~! may correspond to the mass transfer limit.
Given that low ionic strength and high zeta potentials are usually necessary for
ionically stabilized sols, the usual criterion that the diffusion limit is reached at a
value of ~10'° M~! s~! will no longer be valid.

Increases in salt concentration will decrease the importance of the migration term
for mass transfer limited reactions. The effects of added indifferent electrolyte will
be to decrease { and to compress the double layer simultaneously. (Since the diffuse
layer capacitance is increased, there is a larger potential difference across the
Helmholtz region.) However as can be seen from the figure, even in 0.1 M 1:1
electrolyte, pronounced deviations from the Smoluchowski value would be ex-
pected.

12.3.2 Activation-Controlled Electron Transfer

For electron transfer into a colloid particle, by a solution species (anodic reactions),
the Tafel equation for the anodic electron transfer rate constant k is given by

ke _ BFAY

«P*  2303RT (12.33)

log —
8%

where Ay is the electric potential difference between the particle surface and the
plane of electron transfer, and k. is the rate constant at Ay = 0. If the ionic
strength is high, the diffuse layer capacitance K4 — oo, and the total double layer
field is confined to the Helmholtz layer. The zeta potential then approaches zero.
Under these conditions, the entire change in electrode potential can be considered
to act on the electrons tunnelling from donor to surface (or surface to donor).
However in colloid systems, a high salt concentration will destabilize the sol, since if
{ — 0, there is no resistance to coagulation. At low ionic strength, the changes in
surface potential will not just appear as an overpotential for electron transfer. Some
of the electric potential is “lost™ in the diffuse layer. The amount “lost” will depend
on the relative capacitances of the two layers of the electric double layer. However,
the diffuse layer potential governs the local concentration of electroactive ions.
Thus, the pH dependence of the rate of electron transfer depends on the zeta po-
tential in two ways. The potential difference (s, — {) alters the rate constant for
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electron transfer through Eq. (12.33), while the change in { potential alters the local
concentration of any charged reactants through the Boltzmann equation, Eq.
(12.8). When both are included, Eq. (12.33) assumes the form [24, 25]:

(B+2r)FC
23RT

ke
lung,'L. = —B(pH — pzc)
el

(12.34)
where is the transfer coefficient for the anodic electron transfer to the colloid and zg
the charge on the reductant. This equation is only valid for simple anodic electron
transfer from the OHP. For cathodic electron transfer to an oxidant with charge zg,
the dependence on zeta potential is given by

log(ket/ket™) = (1 — B)(PH — pH,,) — (20 + B — 1)F{/2.303RT  (12.35)

The conduction band energy level in the colloid particle is normally the acceptor
level for the transferred electron, and at the pzc, this energy level will not be iden-
tical to the redox potential of the solution couple. To compare intrinsic rates of
electron transfer for the same solution couple with various colloidal semiconduc-
tors, it is necessary to decouple this chemical free energy term, AE,, = E”*‘M—
Eedox, Which drives the reactions at the pzc. Thus the most useful parameter is k.™
given by:

ket = kP exp (—~FAEq,/RT) (12.36)

where for convenience we assume that the energy levels are potentials on a suitable
electrochemical scale.

12.3.3 The Transition between Activation and Mass Transfer Limits

The transition between diffusion and activation control has been discussed by
several authors for the case of zero migration [26,27]. The observed rate constant
can be readily derived by consideration of the steady state concentration of a re-
ductant at the electron transfer plane to a single colloid particle. Let this be denoted
coup. The flux due to surface reaction is then 4na’k.coup. where k. is the rate
constant for electron transfer. This must be balanced by the flux from solution.
Integrating Fick’s Law with the boundary condition that ¢ = coup at r = a rather
than ¢ = 0 yields

kobs ¢* = dnaD(c* — coup) = 4na’ ke conp (12.37)

It can be seen from this equation that the maximum flux to the OHP occurs if
coup = 0, which occurs as k¢ increases. Conversely, the concentration gradient re-
duces to zero if k. = 0, as expected intuitively. After rearrangement, the observed
bimolecular rate per particle is
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The same manipulations can be used when there is an electric field present around
the particle, and in this case the transition from activation control to mass transfer
control obeys

1 O A 2 zred(r)\ _, _ _
—— sl expl = 24 12.39
Kov  4nad® |k [ “"( kT ) ”} AR

Clearly, the mass transfer rate constant depends on pH for charged reactants. So,
for a reaction which is diffusion controlled over a wide pH range, as might be
expected for many colloid reactions with e (aq) for example, a pH dependent
reaction rate will be found.

12.4 Colloid Kinetics — Experimental Data

12.4.1 The Effect of pH

Various research groups have examined the rate of disappearance of a solution
species via electron transfer to colloid particles, or conversely the transfer of elec-
trons to acceptors in solution following photoexcitation of a semiconductor colloid.
We cite the studies by Gritzel with TiO, [26-28], Darwent and coworkers [29-31],
Willner [32] on silica, Bahnemann et al. on ZnO and TiO; [33], and Swayambuna-
than et al. on iron oxide [24, 25]. For many systems the chosen reactants have been
radiolytically or photolytically generated, and the rate constants have been found to
be close to the mass transfer limit.

Griitzel and Frank initially reported the very dramatic effect of pH on the rate
constant for electron transfer using colloidal TiO; and methyl viologen as electron
acceptor. Their results shown in Figure 12.7, clearly revealed the exponential de-
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Figure 12.7. The relative rates of electron transfer from 5! |

photoexcited colloidal TiO; to methyl viologen dications as B8 s B8 T B 8
a function of pH. Adapted from ref. 26. pH
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pendence on pH predicted by classical electrochemical kinetics. This work was the
first to show that even when the Helmholtz potential difference is governed by ion
adsorption from solution and not by the electrical charge provided through an ex-
ternal power supply, the Tafel equation is still applicable. The ionic strength is not
mentioned in their paper so it is difficult to reliably assess the importance of diffuse
layer corrections [26].

12.4.2 The Effect of Electrolyte Concentration on Electron Transfer

Darwent et al. examined for the first time the role of diffuse layer contributions to
the kinetics of electron transfer. They demonstrated that all electron transfer rates
depend on ionic strength except at the pzc, as shown in Figure 12.8. They corrected
their data for the diffuse layer contribution, using Debye-Hiickel theory, modelling
the nanosized titania colloids as large charged molecules. By employing weak
double layer theory, i.e. low potentials, they showed that the observed transfer co-
efficient for metal oxide colloids obeys

o~ oo+ (B+ CI%) 12.40

where I is the ionic strength and B and C are adjustable parameters. This equation
is similar to the one employed in metal electrode kinetics at low overpotentials.
The parameters B and C are related to the relative capacitances of the diffuse and
Helmbholtz layers, and o, is the transfer coefficient at infinite ionic strength. In Fig-
ure 12.9, we have attempted to reanalyse their results using electrophoretic data
gleaned from the work of Wiese and Healy [34]. Good agreement is obtained, both
for different pH values and for large variations in ionic strength using Eq. (12.35).
This clearly illustrates that instead of using B and C as adjustable parameters, ex-
perimental zeta potentials can be used to quantify the effects of ionic strength on the
rates of electron transfer.
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o P | Figure 12.8. The effect of ionic strength and pH on the rate
i1 2 3 4 5 g 7 ofelectron transfer from colloidal TiO; to methyl viologen

pH dication in the region around the pzc. Adapted from ref. 29.
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12.4.3 The Effect of the Zeta Potential and Radical Charge on the Rate
of Electron Transfer

The only electron transfer experiments to date in which zeta potentials have been
measured directly on the same nanosized particles is in the work of Swayambuna-
than et al. [24, 25]. Their results for electron transfer to colloidal iron oxide from
both anionic and cationic viologen radicals are shown in Figure 12.10. By using two
viologen radicals with opposite charge but virtually identical redox potentials, they
confirmed that electrostatic effects dominate the kinetics of e.t. in solution. The
rate of electron transfer for both radicals coincides at the pzc, again highlighting
the fact that the pzc is the natural reference point for measuring transfer kinetics.
However, rather than resorting to Debye-Hiickel theory, valid only at low surface
potentials, Swayambunathan et al. measured the zeta potential as a function of
pH. The reaction becomes mass transfer limited for the anionic viologen radical
at low pH as the surface potential of the iron oxide particles becomes very posi-
tive. Consequently, the kinetics must include both activation and mass transfer
equations.
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In Figure 12.10, two curves are shown. One of these (curve B) uses the conventional
Smoluchowski equation for the calculation of the mass transfer limit, based on Eq.
(12.38), together with Eq. (12.34) for kg. From the discussion above, the double
layer corrected form, Eq. (12.39), should be better, since the radicals are charged
and migration will contribute to the mass transfer of the radical to the colloid sur-
face. Curve A uses Eq. (12.41) which is derived from Eq. (12.39) and Eq. (12.34).
However the reaction only becomes mass transfer limited at low pH’s, and below
pH 3, the increasing solubility of the oxide and increasing electrolyte concentration
make comparison with the theoretical values more difficult. The mass transfer limit
in this pH range was calculated from Eq. (12.39), using the radius a = 20A, as es-
tablished by electron microscopy. The inclusion of the migration term does appear
to give a better fit to the data than Eq. (12.38) over the limited pH range in which
the reaction is diffusion controlled. The observed rate corresponds to a second order
rate constant about twice that predicted by the Smoluchowski equation. It is worth
noting that the transition to diffusion-migration control takes place over quite a
wide pH range, and extends to pH 7, where the reaction is well below the expected
mass transfer imposed limit.

It is clear that the entire pH dependence of the rate constants can be unified
through the assumption that the zeta potential is close to the potential at the plane
of electron transfer. In fact if the zeta potentials were about 10-20 mV higher, the
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Figure 12.11. The effect of increased ionic strength
on the rate of electron transfer to colloidal iron
oxide from cationic methyl viologen radicals at
pH 5.5. Fit to Eq. (12.34) with o = 0.5, using Q
a=20A, pzc=8.1 + 0.3 using complete solution 0 2 e
to the nonlinear PB equation and a Stern layer with 0.0 0.4 0.8 1.2
K; = 400 pFem 2 Adapted from ref. 24. b

-1
s
obs

log k

Figure 12.12. The effect of increased ionic : N
strength on the rate of electron transfer to g =
colloidal iron oxide from cationic methyl
viologen radicals at pH 11. Fit to Eq. 12.34 r =
with & = 0.5, using a- 20A, pzc=8.1 £ 0.3
using complete solution to PB equation and a
Stern layer with K; = 400 pFem . Adapted
from ref. 24.

agreement would be almost perfect, an indication perhaps that the shear plane lies
just beyond the true plane of transfer. Swayambunathan et al. also studied the role
of electrolyte concentration [25]. As can be seen in Figure 12.11, the rate at pH 5.5
increases dramatically as salt is added, because of decreased repulsion between the
positively charged radical and the positively charged colloid particles. The rate is
400 times faster in 1M electrolyte (NaClO4) at pH 5.5. Conversely, above the pzc,
the rate of transfer decreases as the attraction between the now negatively charged
sol and the radical is reduced (see Figure 12.12). Unlike the case in purely ionic
systems the plot of log kobs versus 172 is not linear. By extrapolating the rate con-
stant to infinite ionic strength, an estimate can be made of the rate of electron
transfer (at pH 5.5 and pH 11.0) when the electric potential is entirely confined to
the Helmholtz layer, and all pH changes act as an overpotential for the charge
transfer. These data are plotted in Figure 12.13. The rate constants at infinite ionic
strength represent the case of electron transfer when { = 0, and should fit on the line
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represented by the reduced form of Eq. (12.34), namely,
log key = log kpae — B(pH — pzc) (12.42)

Using the two infinite ionic strength rate constants gives a value of f = 0.47. This
value is the ‘true’ transfer coefficient for oxidation of methyl viologen radical
cations by colloidal iron oxide. Note that at low ionic strength, an experimental
analysis of the transfer kinetics over only one or two pH units could easily have led
to the conclusion that the radical is either negatively charged or positively charged.

The identification of the zeta potential with the potential at the plane of electron
transfer has a further use if, a priori, the transfer coefficient is known. The existence
of maxima or minima in the rate of an interfacial charge transfer reaction can then
be predicted from Eq. (12.34) following differentiation:

opH dpH 2.303R7
Hence at the maximum or minimum,
3
00592—pH = =% (12.44)

B+ zr - d pH

and the slope of the zeta vs. pH curve determines the value of the pH at which a
maximum or minimum in the rate of electron transfer occurs. Thus proper charac-
terization of the colloid double layer is essential when attempting to optimize elec-
tron transfer.

Another interesting case is the study by Moser et al. of the reduction of a co-
baltacenium dicarboxylate anion as a function of pH using photoexcited colloidal
TiO; [28]. They observed a decrease in the rate with increasing pH, contrary to
earlier results with methyl viologen and proposed that the redox active anion was
involved in an acid-base equilibrium with a dianion, which was in turn postulated
to be electrochemically inert. The effective concentration of the electroactive ac-
ceptor then decreased with increasing pH, and this was used to explain the observed
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Figure 12.14. Observed dependence of the rate of electron transfer from photoexcited colloidal
TiO, to cobaltacenium dicarboxylate anions on pH and the calculated rates relative to the pzc

predicted using the zeta potential data of Wiese and Healy and assuming z = —1, and an ionic
strength of 1 mM. The entire pH dependence including the slope and absolute value at the mini-
mum near pH 11 is predicted from Eq. 12.35) with f = 0.5, z = —1.

decreased rate of electron transfer. However, a simpler explanation is that the in-
creasingly negative zeta potential at high pH is responsible for the rate decrease. In
Figure 12.14, we have fitted their data to Eq. (12.35). This equation accurately
predicts both the decrease and the minimum at pH 10.5, and the eventual upturn in
the rate, which is not easily explained via the dissociation mechanism.

12.4.4 Non-Nernstian Behavior

Equation 2, the Nernst equation, is clearly fundamental to the interpretation of all
the data presented so far, yet we cannot directly measure ¥, only a potential at the
plane of shear. Charge titration curves obtained from metal oxide suspensions are
dramatically different to those obtained on silver halides or mercury, and suggest
very large inner layer capacitances (10, 11, 13], implying that the Helmholtz region
around metal oxides is a vastly different environment to that around mercury. It
now seems clear that for any insulating or semiconducting surface, where the lattice
ions themselves are not the potential determining ones, as is the case for Agl where
Ag* and I~ determine the surface potential, an alternative formulation for the sur-
face charging mechanism is required. These are termed ‘‘ionizable surface group
models”. For oxides, the surface is considered to act as an ampbhoteric acid and base
with fundamental surface reactions of the form

AH," = AH +H" 12.45)
AH= A +H" (12.46)
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determining the surface charge. Here A denotes the surface group on the particle.
Each reaction has an associated equilibrium or surface acidity constant, K, and
K,>. Analysis of such surface ionization models suggests that Nernstian behaviour is
a limiting form for most surfaces. Healy and White [11] show that deviations from
Nernstian behaviour can be characterised by pK, where pK = pK,; — pK,. It de-
fines the difference in acidity of the surface groups. The values can only be deter-
mined experimentally, and the resulting equations for the surface potential can only
be solved numerically or graphically [10].

The effects of non-Nernstian behaviour on the kinetics of electron transfer have
not been examined to date. In principle, if di,/dpH < 59 mV/pH, then the differ-
ence must appear as a potential difference within the oxide, but this will only be
established by slow proton diffusion through the solid [35]. The two metal oxides
for which data are available, TiO, and Fe,03, are both reasonably Nernstian, and
the fits to the kinetic data are noticeably inferior if less than Nernstian response of
i/, to pH is assumed in the calculations. Furthermore, flat band measurements on
ZnO and TiO, prove unequivocally that the bulk energy levels within the metal
oxides are shifted by —59 mV/pH change in solution [36, 37]. It is worthwhile noting
that ionizable surface group models consistently require large inner layer capaci-
tances (>100 pF cm2) to reconcile charge titration and electrokinetic data, and the
data for electron transfer from viologen radicals to iron oxide can likewise only be
reconciled using a large Stern layer capacitance of 450uF cm 2. So both the e.t.
kinetics and charge titration/electrophoresis data indicate that the Helmholtz region
of metal oxides is very different to the mercury-water interface.

12.4.5 Extensions to Other Systems

There is a paucity of clear data on e.t. to metal sulphides, or other chalcogenides
(MX), as a function of pH or [H>X]. In the case of metal halides, Hoffman and
Billings showed that the reduction overpotential of an AgBr electrode varied with
pBr [38]. Morrison has reviewed the data for CdS and other sulphide systems, but
the conclusions are unclear [37]. Since many workers do not control [H,S] of the
sols after preparation, surface potential control is not possible. Ginley and Butler
demonstrated by charge titration that the Fermi level in a CdS electrode is con-
trolled by pH and [HS™] [39]. van Leeuwen and Lyklema have reported on Agl
electrode measurements in which they examine both ion adsorption and electron
transfer: their review also discusses processes such as double layer relaxation [40].

12.5 The Effect of Zeta on Radical Scavenging Yields

The viologen radical does not undergo recombination at a perceptible rate, and so it
is possible to examine the effect of the double layer upon mass transfer and activa-
tion controlled reactions with this radical using quite simple modifications of the
Tafel and Smoluchowski equations. In general however, excited species generated
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by either photolysis or radiolysis undergo various deactivation pathways in addition
to reaction with substrates such as colloidal particles. In the case of photolysis, these
are usually first-order radiative or nonradiative energy losses, and these are readily
incorporated into the equations above. A more common situation in radiolysis is
that the radical undergoes self-reaction, i.e. second order loss. Furthermore a num-
ber of radicals have pK,'s in the common range of solution acidities. The charged,
anionic form will interact with the colloid double layer. Rao and Hayon [41] have
made extensive measurements of radical pK,'s by spectrophotometric means, and
Henglein and colleagues have measured many radical pK, values by pulse radio-
lysis polarography [42]. The radical anion is a better reductant than the neutral,
‘acidic’ form [41], and often recombination of the charged anionic form is slower
than recombination of the neutral radical. Trying to unravel these various effects is
an arduous one. In the following, we describe some model calculations on how the
double layer parameters control scavenging yields of radicals by colloidal iron oxide
particles. We summarize a typical scenario in Figure 12.15, where we show how the
radical speciation and particle charge might change with pH.

The scavenging of the radicals under steady state conditions will depend upon
both the pK, of the radical, the pzc of the oxide and whether the reaction is diffu-
sion controlled or activation controlled. For activation controlled processes, it is
necessary to know kp,, the intrinsic rate of transfer at the point of zero charge, for
both the acid and base forms of the radical. For activation controlled electron
transfer, double layer corrections are also required for neutral radicals. This follows
from Eq. (12.34) with zg = 0.

For mass transfer limited reactions of radicals with colloid particles, the position
is slightly simpler. Given a well defined acidity constant K, for the dissociation,

RH<R™ +H" (12.47)

Figure 12.15. Diagram illustrating the changing speciation
of radicals and charge around a metal oxide colloid
particle. (Top): pH < pK, and all radicals neutral and oxide
positively charged. (Middle): pH raised until pzc > pH >
pK,. Radical anion now predominates and local concen-
tration around oxide particles is enhanced. (Bottom): At
higher pH, the oxide particle becomes negatively charged
and radical anions are depleted near particle surface.
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where RH and R~ are the acid and basic forms of the radical respectively, the
fraction of radicals initially present in the protonated form is a = [RH|/[R], =
1/(1+ K,/[H"]), and those in the deprotonated form is (1 — a), where the total
radical concentration is [R],. The rate of disappearance at any pH is then due to
recombination of both protonated and deprotonated radicals as well as to colloid
encounters by both charged and uncharged radicals.

d[R],/dt = G(R)D — kgi[R], [colloid] — kpeia(1 — &) [R], [colloid]
— 2%k [R].2 — 20(1 — a)ka[R]2 — 2(1 — a)*k3[R],2  (12.48)

where kpqq 18 the encounter rate constant using Eq. (12.32), kgyr is the field-free
diffusion controlled rate constant given by Eq. (12.30), while k;, k> and k3 are
the recombination rate constants for radical-radical deactivation, and G(R)D is the
production rate of the radical, which for radiolytically generated radicals, is the
dose rate, D, times the G value for the species R. Using the steady state approxi-
mation, Eq. (12.48) becomes quadratic in [R]; and the steady state radical concen-
tration is readily found to be

—Kq + (K2 — 4K,G(R)D)'/?

Rlp=—" g (12.49)
where

K: = 202k + 2(1 — a)ka + 2(1 — a)*ks 12.50)
and

Kq = {(1 — a)kqiy + Kpiera o} [colloid]. (12.51)

The value [R]; can then be inserted into Eq. (12.49) to determine the fraction
disappearing by recombination and the fraction scavenged by the colloid. The
scavenging efficiency, 4, is then defined as
I . . (12.52)
Kq 4 KT:R!“

To get a feel for the size of the double layer effects, we have taken the formic acid
radical with a pK, of 3.4 as the reductant, and colloidal iron oxide as the colloid.
In Figure 12.16, the speciation and colloid charge as a function of pH are shown. In
Figure 12.17, 4 is plotted as a function of the colloid concentration for a number
of pH’s. In the calculations, it was assumed that a = 20A and k1 =k =k;3 =
1 x 10! M~'s~!. As is very clear, the scavenging shows a strong pH dependence,
and a maximum occurs at a pH where the radical is deprotonated, but the oxide
is still positively charged. As the pH is increased through the pzc, the efficiency
decreases dramatically, because both the sol and the radical become negatively
charged (see Figure 12.18). Clearly, a primary prerequisite for achieving high effi-



12.5 The Effect of Zeta on Radical Scavenging Yields 299
1 7
ImM Electrolyte g
a=20A S
=2
0.57%
= &
g £
e ) Z
&
o
3 40 4
pK PZC \
Figure 12.16. The measured zeta potential A i o
for nanosized iron oxide particles vs pH at -80 :
1 mM electrolyte and the relative population
of radicals and radical anions assuming a 2 6 8 10 12
rK, of 3.4. pH
1.0
pH4 ,——
.
0.8 //// pH __f/""’ =
/ » pH6 "
: i"l,.-’ 4 _,a--"
= f -
E _,-"/ pH?9 .-///'___..
P 1o —
%"’ i v _,--"X/- pH 12 |

Figure 12.17. The radical scavenging efficiency
of colloidal iron oxide as a function of colloid
concentration and pH using parameters in Figure
12.16.

Figure 12.18. The radical scavenging efficiency of colloidal
iron oxide as a function of pH at two colloid concentrations.
The efficiency peaks at a pH between the pK, and pzc due
to enhanced mass transfer to the colloid particles.
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ciency is that pzc > pK,. However, even if the pzc < pK,, recombination of the
radical anion is often slower than for the neutral form. so higher yields may still be
found even with electrostatic repulsion. Thus when a redox reaction is under diffu-
sion control, the double layer may exert a significant effect on the rate of reaction
and the efficiency of radical scavenging.

12.6 Colloid Nucleation and Nanoparticle Stability

In this final section, we address briefly the role of stabilizers for nanoparticles. Even
colloidal metals which have high Hamaker constants and which should be suscep-
tible to coagulation can be made as sols with quite low zeta potentials that are
stable for months at a time. What does the double layer tell us about preparing
nanosized particles in water? For the case of low potentials, and small overlap
between double layers, the results are quite unexpected. The electrostatic repulsive
energy for two spheres of radius a, with low surface potential i, approaching each
other in a medium of Debye length x ! is given by:

r T ot "t b M . ] Y
Viep(kT) = 4neceoh 2a® /v exp(—«xa(r/a — 2)) 12

wn

3

The nonretarded van der Waals attractive energy between particles of radius a is
given by

Vau(kT) = —A4/6{2a° /(P — 4a®) + 24*/P + In(1 — 242/ 213 (12.54
with r > 2a, the centre-to-centre distance. According to DLVO theory it is the sum
of the two energies that determines particle stability. The usual criterion are that a
barrier of 15-20kT is sufficient to ensure colloid stability. These two functions are
plotted in Figures 12.19 and 12.20 as a function of the particle surface separation
and for various particle sizes [43). It is clear from Egs. (12.53) and (12.54), that the
interaction energy increases with particle radius, a. for both the attractive and re-
pulsive energy. As a consequence, we can see in Figure 12.21 that the barrier height
to colloid stability at fixed v increases as the particle size increases. Consequently,
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Figure 12.21. The total interaction energy due to both repulsive and attractive forces. Conditions as
per Figures 12.19 and 12.20. Critical to nanoparticle nucleation and stabilization in solution is that
the repulsive energy is smaller for small particles so a larger zeta potential is required for colloidal
stability, but the primary minimum created by attractive dispersion interactions is likewise smaller,
so that stabilization by adsorbed polymers, surfactants or chemisorbed complexing agents, such as
thiols or small carboxylic acids, is much more efficacious than for larger colloid particles.

there is an automatic tendency for coagulation of particles to slow down as coagu-
lation proceeds. This factor may often determine the final particle size distribution
following nucleation. But the primary minimum associated with particle coale-
scence also becomes deeper as the particle size increases. If two particles > 10 nm in
size coalesce in solution, they will not be able to separate again since their thermal
energy will be insufficient to allow them out of the primary minimum. Conversely,
nanosized particles will peptize relatively easily. It is important to recognize that
rapid peptization is essential. An agglomerate of small particles will behave in van
der Waals terms like a larger particle and the van der Waals interaction energy with
other unpeptized particles will gradually increase if agglomeration is allowed to
continue. Provided nanoparticles peptize quickly, the van der Waals potential
well around the temporary agglomerate will not have time to deepen further via
aggregate—colloid encounters.

It is clear from these figures that only small molecules should be necessary to
prevent coalescence and particle coagulation of nanoparticles. Chemisorbed mole-
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cules provide a steric barrier, and for particles < 100A in diameter, this will be
sufficient to offset the van der Waals interactions. However, i, should be large to
prevent the formation of loose agglomerates. Thus, small stabilizers can be re-
markably efficacious in stabilizing nanosized colloid particles.

12.6.1 Some Unresolved Aspects of Colloid Redox Chemistry

The aim of this chapter has been to show how the measured properties of powders
and suspensions in liquids are important not just from the thermodynamic or col-
loid stability viewpoint. The equations describing the electrical double layer around
particles also govern the kinetic response to redox disequilibria in solution, and
rates of electron transfer can be controlled and optimized once the various factors
are understood. Disappointingly, there have been few studies to elucidate how spe-
cific adsorption at a colloid surface affects electron transfer, yet most nanosized
particles can only be prepared in the presence of strong growth inhibitors such as
polyelectrolytes which strongly adsorb to the particle surface. Darwent’s work on
the effects of sulfate adsorption remains an exception [29], and the PhD work by

by
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Figure 12.22. Effect of pH on the electrophoretic mobility of colloidal TiO; in the presence of
tris(2,2-bipyridine-4,4'-dicarboxylic acid) ruthenium (II). Specific adsorption occurs below the
pzc of 6.1. If adsorption occurs at the outer Helmholtz plane (close to the shear plane), then
there will be a dramatic increase in the overpotential for electron injection into the titania col-
loid, which depends exponentially on the potential across the Helmholtz layer. If we assume that
W, is constant for a particular pH value then we predict that the rate of electron injection should
be enhanced through Eq. (12.34) by an amount exp (SF(y, — {))/RT. The negative charge on
the adsorbed sensitizer not only aids adsorption to the positively charged colloid particles, but
simultaneously accelerates injection by creation of an increased Helmholtz potential difference.
The degree of enhancement is critically determined by the location of the planes of dye adsorp-
tion and electron transfer. Adapted from ref. 45.
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Kleijn on the effects of viologen adsorption on RuO; electrokinetics is another [44].
These adsorption effects may also play a prominent role in systems such as dye
sensitized photoelectron transfer, which has recently been demonstrated as a viable
basis for charge separation in solar energy conversion [6]. In the so-called Gritzel
cell, high surface area electrodes are synthesized by sintering metal oxide colloid
films. The sensitizer is adsorbed primarily electrostatically, but the act of chemi-
sorption modifies the potential distribution at the surface, and this may act to aug-
ment or hinder the electron injection rates following illumination. That such effects
will be important is immediately apparent from the zeta potential data for titanium
dioxide colloids in the presence of the anionic ruthenium dye shown in Figure 12.22
[45]. In this case, since the photoelectron transfer is anodic, the adsorption of the
negatively charged dye onto the positively charged metal oxide particles could be
beneficial. The zeta potential becomes more negative, but we assume that at any
pH, the actual surface potential is fixed by Eq. (12.2), so the adsorption must in-
troduce a large electric field across the Helmholtz layer, driving electron transfer
into the particle. This synergistic effect may enhance the rates of e.t. by a factor of
10-100, based on the data in Figure 12.22.

Studies on the effects of complexing agents on rates of electron transfer could
well assist in the formulation of additives to improve industrially important redox
reactions such as rust removal. The role of extraneous ligands on electron transfer
to iron oxide are still speculative. For example, would o-phenanthroline, a potent,
neutral complexing agent for Fe(Il) slow down e.t. from viologen radicals to col-
loidal iron oxide by specific adsorption to the surface, thus blocking viologen ap-
proach? Or would it conversely aid e.t. by prebinding to selected Fe(III) surface
sites, accelerating the actual rate of e.t. to these specific, activated sites? Or would it
simply accelerate the rate of Fe(Il) desorption following reduction, thereby expos-
ing fresh Fe(III) surface sites more quickly and by this mechanism accelerate par-
ticle dissolution? To date only steady state dissolution data are available to help
answer these detailed mechanistic questions [46].

What at least should be clear is that simple electron transfer is governed by the
overall electrical potential distribution at the colloid surface, with the zeta potential
governing the local surface concentration of charged reactants, and the difference
(f, — ) acting as the overpotential for actual transfer from solution to surface. The
relative rates at different pH’s can be accurately predicted when no specific ad-
sorption occurs if { potentials are determined. If the actual data are to be believed,
then the plane of electron transfer lies slightly closer to the surface than the plane of
shear. which determines the electrokinetic or zeta potential, a conclusion consistent
with modern views about the electrical double layer. Frumkin, the discoverer of the
diffuse layer effect in electrode kinetics, would have been happy [17, 18], to see the
same effects so prominent in colloid redox kinetics too.

In the case of mass transfer limited reactions, there are no data to indicate
whether the dramatic effects predicted from the calculations in Figures 12.5 and
12.6 really occur. Such drastic retardation must have important implications for
enzyme catayzed reactions as well as colloid redox chemistry. For example, one
might expect that the reaction
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2Fe(CN)*~ + MnO; + 4H' = Mn?* 4+ 2Fe(CN)> +2H,0  (12.55

would be close to mass transfer limited given the strong AE® = 1.2V for reaction.
Yet 250A MnO; sols have zeta potentials of —50 mV at pH 6, so the rate of e.t. is
predicted to lie at 10® M~'s™!, not 10" M~'s™!. Likewise reactions such as the
disproportionation of superoxide anions by superoxide dismutase, which has a
negative mobility at physiological pH, would be hindered by slow migration of the
substrate to enzyme active sites at low ionic strength.

In this article, we have not discussed the electrical double layer within colloid
particles since this remains a basic unknown in colloid science. Microwave con-
ductivity offers the prospect of determining the concentrations of carriers, at least in
nonaqueous systems, but there are again no data except for flat band potentials
measured on sintered nanocrystalline electrodes from which to evaluate donor
densities, trap energies or internal space charge potentials [6].

Fundamental to the understanding of charge injection into insulating materials
is the concept that the potential determining ions regulate the surface potential in-
dependently of the charge injected through redox reactions. This can be justified on
the basis of the small space charge capacitance compared with the solution phase
Helmholtz capacitance. Consequently for a fixed chemical potential of the proton in
the bulk solution, the surface potential is fixed, and charge transfer into or out of
the particle must be accompanied by proton adsorption or desorption [24, 25]. Be-
cause of the facility of these reactions, one can normally assume that an insulating
particle retains a constant surface potential during a redox reaction, though ob-
viously after extensive reaction, the chemical potential of the proton within the solid
or in the bulk may have changed.

A final, interesting question which appears never to have been systematically in-
vestigated is whether the van der Waals forces at the surface have any effect on the
rate of electron transfer to and from solution. In principle, the mass transfer rate
constant for all electroactive species will be enhanced at small separations (< 10nm)
by dispersion forces, since the molar refractive index of the electroactive species
differs from the average refractive index of the medium. The dispersion interaction
will not be as important as it is for colloid—colloid interactions because of the small
radius of the electroactive species — see Figure 20, but it may still be significant
enough to cause perceptible changes in the observed rates of mass transfer to
charged surfaces. Whether this effect can be harnessed as a means to further opti-
mize e.t. is still to be determined. Thus, though we have set out to show that the
theoretical foundations linking colloid chemistry and electrochemistry have been
further bolstered and consolidated through the research on colloid redox chemistry
over the last decade or two, many basic questions remain unresolved.
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